Foundations of Deep Reinforcement Learning: Theory and Practice in Python eBook : 9780135172483

Foundations of Deep Reinforcement Learning: Theory and Practice in Python eBook

 
Edition
 
1
ISBN
 
9780135172483
ISBN 10
 
0135172489
Published
 
01/11/2019
Published by
 
Pearson Higher Ed USA
Pages
 
Format
 
 
Title type
eBook
$41.99
NZ/Pacific customers only
 
 
This eText can only be purchased by people residing in New Zealand, Fiji, Samoa, Tonga or Cook Islands with a credit card from the same country. Click here to find the Pearson website for your region.
 
Description
Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games—such as Go, Atari games, and DotA 2—to robotics.

Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work.
  • Understand each key aspect of a deep RL problem
  • Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)
  • Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)
  • Understand how algorithms can be parallelised synchronously and asynchronously
  • Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work
  • Explore algorithm benchmark results with tuned hyperparameters
  • Understand how deep RL environments are designed
This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python.

The full text downloaded to your computer

With eBooks you can:

  • search for key concepts, words and phrases
  • make highlights and notes as you study
  • share your notes with friends

eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps.

Upon purchase, you will receive via email the code and instructions on how to access this product.

Time limit

The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.

Table of contents
  • Chapter 1: Introduction to Reinforcement Learning
  • Part I: Policy-Based and Value-Based Algorithms
  • Chapter 2: Policy Gradient
  • Chapter 3: State Action Reward State Action
  • Chapter 4: Deep Q-Networks
  • Chapter 5: Improving Deep Q-Networks
  • Part II: Combined Methods
  • Chapter 6: Advantage Actor-Critic
  • Chapter 7: Proximal Policy Optimization
  • Chapter 8: Parallelization Methods
  • Chapter 9: Algorithm Summary
  • Part III: Practical Tips
  • Chapter 10: Getting Reinforcement Learning to Work
  • Chapter 11: SLM Lab
  • Chapter 12: Network Architectures
  • Chapter 13: Hardward
  • Chapter 14: Environment Design
  • Epilogue
  • Appendix A: Deep Reinforcement Learning Timeline
  • Appendix B: Example Environments
  • References
  • Index
Access Code info.

To get the most out of your eBook you need to download the VitalSource Bookshelf software. This software is free to download and use. View the VitalSource Bookshelf system requirements here.

Download Information: Once purchased, you can view and/or download your eBook instantly, either via the download link which you will receive as soon as you complete your online order or by viewing the download link against the order in the My Account area of this website.

Please note: eBooks are available for download immediately and cannot be returned once purchased.