Thermodynamics: An Interactive Approach, Global Edition VitalSource eText : 9781292113753

Thermodynamics: An Interactive Approach, Global Edition VitalSource eText

Published by
Pearson Higher Ed USA
Title type
NZ/Pacific customers only
Please note: You can only purchase up to 2 of this product at a time.
This eText can only be purchased by people residing in New Zealand, Fiji, Samoa, Tonga or Cook Islands with a credit card from the same country. Click here to find the Pearson website for your region.

Digital Access Code. When you buy a VitalSource eText you will receive a unique digital redemption code and instructions on how to access this product. Please note: VitalSource eTexts are available for download immediately and cannot be returned once purchased.

Pearson VitalSource eTexts – digital books that fit your portable lifestyle

With Pearson VitalSource eTexts you can:

  • search for key concepts, words and phrases
  • make highlights and notes as you read or study
  • share your notes with friends
  • print up to 5 pages at a time 
  • use with PCs, MACs, smartphones and tablets 

The full text downloaded to your computer

Pearson VitalSource eTexts are downloaded to your computer and are accessed through the free VitalSource Bookshelf either offline or online, and also via the iPad/Android apps.

Time Limit

Pearson's Higher Education and Professional VitalSource products do not have an expiry date. You will continue to access your VitalSource products whilst you have your VitalSource Bookshelf installed.

Find out more about VitalSource eTexts

About the book

For the thermodynamics course in the Mechanical & Aerospace Engineering department

Thermodynamics: An Interactive Approach employs a layered approach that introduces the important concepts of mass, energy, and entropy early, and progressively refines them throughout the text.

Table of contents
0. Introduction Thermodynamic System and its Interactions with the Surroundings

0.1 Thermodynamic Systems

0.2 Test and Animations

0.3 Examples of Thermodynamic Systems

0.4 Interactions Between The System and its Surroundings

0.5 Mass Interaction

0.6 Test and the Daemons

0.7 Energy, Work, and Heat

0.7.1 Heat and Heating Rate (Q, Q)

0.7.2 Work and Power (W, W#)

0.8 Work Transfer Mechanisms

0.8.1 Mechanical Work (WM, W#M)

0.8.2 Shaft Work (Wsh, W#sh)

0.1.5 Electrical Work (Wel , Wel#)

0.8.3 Boundary Work (WB, W#B)

0.8.4 Flow Work (W#F)

0.8.5 Net Work Transfer (W#, Wext)

0.8.6 Other Interactions

0.9 Closure

1. Description of a System: States And Properties

1.1 Consequences of Interactions

1.2 States

1.3 Macroscopic vs. Microscopic Thermodynamics

1.4 An Image Analogy

1.5 Properties of State

1.5.1 Property Evaluation by State Daemons

1.5.2 Properties Related to System Size (V, A, m, n, m # , V#, n # )

1.5.3 Density and Specific Volume (r, v)

1.5.4 Velocity and Elevation (V, z)

1.5.5 Pressure (p)

1.5.6 Temperature (T)

1.5.7 Stored Energy (E, KE, PE, U, e, ke, pe, u, E#)

1.5.8 Flow Energy and Enthalpy (j, J#, h, H#)

1.5.9 Entropy (S, s)

1.5.10 Exergy (f, c)

1.6 Property Classification

1.7 Evaluation of Extended State

1.8 Closure

2. Development of Balance Equations for Mass, Energy, and Entropy: Application to Closed-Steady Systems

2.1 Balance Equations

2.1.1 Mass Balance Equation

2.1.2 Energy Balance Equation

2.1.3 Entropy Balance Equation

2.1.4 Entropy and Reversibility

2.2 Closed-Steady Systems

2.3 Cycles–a Special Case of Closed-Steady Systems

2.3.1 Heat Engine

2.3.2 Refrigerator and Heat Pump

2.3.3 The Carnot Cycle

2.3.4 The Kelvin Temperature Scale

2.4 Closure

3. Evaluation of Properties: Material Models

3.1 Thermodynamic Equilibrium and States

3.1.1 Equilibrium and LTE (Local Thermodynamic Equilibrium)

3.1.2 The State Postulate

3.1.3 Differential Thermodynamic Relations

3.2 Material Models

3.2.1 State Daemons and TEST-Codes

3.3 The SL (Solid>Liquid) Model

3.3.1 SL Model Assumptions

3.3.2 Equations of State

3.3.3 Model Summary: SL Model

3.4 The PC (Phase-Change) Model

3.4.1 A New Pair of Properties–Qualities x and y

3.4.2 Numerical Simulation

3.4.3 Property Diagrams

3.4.4 Extending the Diagrams: The Solid Phase

3.4.5 Thermodynamic Property Tables

3.4.6 Evaluation of Phase Composition

3.4.7 Properties of Saturated Mixture

3.4.8 Subcooled or Compressed Liquid

3.4.9 Supercritical Vapor or Liquid

3.4.10 Sublimation States

3.4.11 Model Summary–PC Model


3.5.1 The IG (Ideal Gas) and PG (Perfect Gas) Models

3.5.2 IG and PG Model Assumptions

3.5.3 Equations of State

3.5.4 Model Summary: PG and IG Models

3.5.5 The RG (Real Gas) Model

3.5.6 RG Model Assumptions

3.5.7 Compressibility Charts

3.5.8 Other Equations of State

3.5.9 Model Summary: RG Model

3.6 Mixture Models

3.6.1 Vacuum

3.7 Standard Reference State and Reference Values

3.8 Selection of a Model

3.9 Closure

4. Mass, Energy, and Entropy Analysis of Open-Steady Systems

4.1 Governing Equations and Device Efficiencies

4.1.1 TEST and the Open-Steady Daemons

4.1.2 Energetic Efficiency

4.1.3 Internally Reversible System

4.1.4 Isentropic Efficiency

4.2 Comprehensive Analysis

4.2.1 Pipes, Ducts, or Tubes

4.2.2 Nozzles and Diffusers

4.2.3 Turbines

4.2.4 Compressors, Fans, and Pumps

4.2.5 Throttling Valves

4.2.6 Heat Exchangers

4.2.7 TEST and the Multi-Flow Non-Mixing Daemons

4.2.8 Mixing Chambers and Separators

4.2.9 TEST and the Multi-Flow Mixing Daemons

4.3 Closure

5. Mass, Energy, and Entropy Analysis of Unsteady Systems

5.1 Unsteady Processes

5.1.1 Closed Processes

5.1.2 TEST and the Closed-Process Daemons

5.1.3 Energetic Efficiency and Reversibility

5.1.4 Uniform Closed Processes

5.1.5 Non-Uniform Systems

5.1.6 TEST and the Non-Uniform Closed-Process Daemons

5.1.7 Open Processes

5.1.8 TEST and Open-Process Daemons

5.2 Transient Analysis

5.2.1 Closed Transient Systems

5.2.2 Isolated Systems

5.2.3 Mechanical Systems

5.2.4 Open Transient Systems

5.3 Differential Processes

5.4 Thermodynamic Cycle as a Closed Process

5.4.1 Origin of Internal Energy

5.4.2 Clausius Inequality and Entropy

5.5 Closure

6. Exergy Balance Equation: Application to Steady and Unsteady Systems

6.1 Exergy Balance Equation

6.1.1 Exergy, Reversible Work, and Irreversibility

6.1.2 TEST Daemons for Exergy Analysis

6.2 Closed-Steady Systems

6.2.1 Exergy Analysis of Cycles

6.3 Open-Steady Systems

6.4 Closed Processes

6.5 Open Processes

6.6 Closure

7. Reciprocating Closed Power Cycles

7.1 The Closed Carnot Heat Engine

7.1.1 Significance of the Carnot Engine

7.2 IC Engine Terminology

7.3 Air-Standard Cycles

7.3.1 TEST and the Reciprocating Cycle Daemons

7.4 Otto Cycle

7.4.1 Cycle Analysis

7.4.2 Qualitative Performance Predictions

7.4.3 Fuel Consideration

7.5 Diesel Cycle

7.5.1 Cycle Analysis

7.5.2 Fuel Consideration

7.6 Dual Cycle

7.7 Atkinson and Miller Cycles

7.8 Stirling Cycle

7.9 Two-Stroke Cycle

7.10 Fuels

7.11 Closure

8. Open Gas Power Cycle

8.1 The Gas Turbine

8.2 The Air-Standard Brayton Cycle

8.2.1 TEST and the Open Gas Power-Cycle Daemons

8.2.2 Fuel Consideration

8.2.3 Qualitative Performance Predictions

8.2.4 Irreversibilities in an Actual Cycle

8.2.5 Exergy Accounting of Brayton Cycle

8.3 Gas Turbine With Regeneration

8.4 Gas Turbine With Reheat

8.5 Gas Turbine With Intercooling and Reheat

8.6 Regenerative Gas Turbine With Reheat and Intercooling

8.7 Gas Turbines For Jet Propulsion

8.7.1 The Momentum Balance Equation

8.7.2 Jet Engine Performance

8.7.3 Air-Standard Cycle for Turbojet Analysis

8.8 Other Forms of Jet Propulsion

8.9 Closure

9. Open Vapor Power Cycles

9.1 The Steam Power Plant

9.2 The Rankine Cycle

9.2.1 Carbon Footprint

9.2.2 TEST and the Open Vapor Power Cycle Daemons

9.2.3 Qualitative Performance Predictions

9.2.4 Parametric Study of the Rankine Cycle

9.2.5 Irreversibilities in an Actual Cycle

9.2.6 Exergy Accounting of Rankine Cycle

9.3 Modification of Rankine Cycle

9.3.1 Reheat Rankine Cycle

9.3.2 Regenerative Rankine Cycle

9.4 Cogeneration

9.5 Binary Vapor Cycle

9.6 Combined Cycle

9.7 Closure

10. Refrigeration Cycles

10.1 Refrigerators and Heat Pump

10.2 Test and the Refrigeration Cycle Daemons

10.3 Vapor-Refrigeration Cycles

10.3.1 Carnot Refrigeration Cycle

10.3.2 Vapor Compression Cycle

10.3.3 Analysis of an Ideal Vapor-Compression Refrigeration Cycle

10.3.4 Qualitative Performance Predictions

10.3.5 Actual Vapor-Compression Cycle

10.3.6 Components of a Vapor-Compression Plant

10.3.7 Exergy Accounting of Vapor Compression Cycle

10.3.8 Refrigerant Selection

10.3.9 Cascade Refrigeration Systems

10.3.10 Multistage Refrigeration with Flash Chamber

10.4 Absorption Refrigeration Cycle

10.5 Gas Refrigeration Cycles

10.5.1 Reversed Brayton Cycle

10.5.2 Linde-Hampson Cycle

10.6 Heat Pump Systems

10.7 Closure

11. Evaluation of Properties: Thermodynamic Relations

11.1 Thermodynamic Relations

11.1.1 The Tds Relations

11.1.2 Partial Differential Relations

11.1.3 The Maxwell Relations

11.1.4 The Clapeyron Equation

11.1.5 The Clapeyron-Clausius Equation

11.2 Evaluation of Properties

11.2.1 Internal Energy

11.2.2 Enthalpy

11.2.3 Entropy

11.2.4 Volume Expansivity and Compressibility

11.2.5 Specific Heats

11.2.6 Joule-Thompson Coefficient

11.3 The Real Gas (RG) Model

11.4 Mixture Models

11.4.1 Mixture Composition

11.4.2 Mixture Daemons

11.4.3 PG and IG Mixture Models

11.4.4 Mass, Energy, and Entropy Equations for IG-Mixtures

11.4.5 Real Gas Mixture Model

11.5 Closure

12. Psychrometry

12.1 The Moist Air Model

12.1.1 Model Assumptions

12.1.2 Saturation Processes

12.1.3 Absolute and Relative Humidity

12.1.4 Dry- and Wet-Bulb Temperatures

12.1.5 Moist Air (MA) Daemons

12.1.6 More properties of Moist Air

12.2 Mass And Energy Balance Equations

12.2.1 Open-Steady Device

12.2.2 Closed Process

12.3 Adiabatic Saturation and Wet-Bulb Temperature

12.4 Psychrometric Chart

12.5 Air-Conditioning Processes

12.5.1 Simple Heating or Cooling

12.5.2 Heating with Humidification

12.5.3 Cooling with Dehumidification

12.5.4 Evaporative Cooling

12.5.5 Adiabatic Mixing

12.5.6 Wet Cooling Tower

12.6 Closure

13. Combustion

13.1 Combustion Reaction

13.1.1 Combustion Daemons

13.1.2 Fuels

13.1.3 Air

13.1.4 Combustion Products

13.2 System Analysis

13.3 Open-Steady Device

13.3.1 Enthalpy of Formation

13.3.2 Energy Analysis

13.3.3 Entropy Analysis

13.3.4 Exergy Analysis

13.3.5 Isothermal Combustion–Fuel Cells

13.3.6 Adiabatic Combustion–Power Plants

13.4 Closed Process

13.5 Combustion Efficiencies

13.6 Closure

14. Equilibrium

14.1 Criteria for Equilibrium

14.2 Equilibrium of Gas Mixtures

14.3 Phase Equilibrium

14.3.1 Osmotic Pressure and Desalination

14.4 Chemical Equilibrium

14.4.1 Equilibrium Daemons

14.4.2 Equilibrium Composition

14.5 Closure

15. Gas Dynamics

15.1 One-Dimensional Flow

15.1.1 Static, Stagnation and Total Properties

15.1.2 The Gas Dynamics Daemon

15.2 Isentropic Flow of a Perfect Gas

15.3 Mach Number

15.4 Shape of an Isentropic Duct

15.5 Isentropic Table for Perfect Gases

15.6 Effect of Back Pressure: Converging Nozzle

15.7 Effect of Back Pressure: Converging-Diverging Nozzle

15.7.1 Normal Shock

15.7.2 Normal Shock in a Nozzle

15.8 Nozzle and Diffuser Coefficients

15.9 Closure



Access Code info.

To get the most out of your Pearson VitalSource eText you need to download the VitalSource Bookshelf software. This software is free to download and use. Click here to view the VitalSource Bookshelf system requirements.

Download Information: Once purchased, you can view and/or download your VitalSource eText instantly, either via the download link which you will receive as soon as you complete your online order or by viewing the download link against the order in the My Account area of this website.

Please note: VitalSource eTexts are available for download immediately and cannot be returned once purchased.